반응형
아래코드를 사용하면 상관 분석이 가능하다
colormap = plt.cm.magma
plt.figure(figsize=(16,12))
plt.title('Pearson correlation of continuous features', y=1.05, size=15)
sns.heatmap(train_float.corr(),linewidths=0.1,vmax=1.0, square=True,
cmap=colormap, linecolor='white', annot=True)
#train_int = train_int.drop(["id", "target"], axis=1)
# colormap = plt.cm.bone
# plt.figure(figsize=(21,16))
# plt.title('Pearson correlation of categorical features', y=1.05, size=15)
# sns.heatmap(train_cat.corr(),linewidths=0.1,vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=False)
data = [
go.Heatmap(
z= train_int.corr().values,
x=train_int.columns.values,
y=train_int.columns.values,
colorscale='Viridis',
reversescale = False,
text = True ,
opacity = 1.0 )
]
layout = go.Layout(
title='Pearson Correlation of Integer-type features',
xaxis = dict(ticks='', nticks=36),
yaxis = dict(ticks='' ),
width = 900, height = 700)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='labelled-heatmap')
빨간색으로 상관관계 시각화
def corr_heatmap(var):
correlations = trainset[var].corr()
# Create color map ranging between two colors
cmap = sns.diverging_palette(50, 10, as_cmap=True)
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(correlations, cmap=cmap, vmax=1.0, center=0, fmt='.2f',
square=True, linewidths=.5, annot=True, cbar_kws={"shrink": .75})
plt.show();
var = metadata[(metadata.type == 'real') & (metadata.preserve)].index
corr_heatmap(var)
반응형
'필사필요코드' 카테고리의 다른 글
생소한 판다스 표현 (0) | 2024.03.08 |
---|---|
산점도 행렬 출력 (0) | 2024.03.03 |
컬럼 타입별로 구분 (0) | 2024.03.03 |
bar를 통한 count 시각화 (0) | 2024.03.03 |
캐글 결측치 컬럼별 출력 (0) | 2024.03.03 |